
Issues Pertinent to the in Vivo
in Situ Spin Trapping of Free
Radicals§

SOVITJ POU,† HOWARD J. HALPERN,‡

PEI TSAI,† AND GERALD M. ROSEN*,†

Department of Pharmaceutical Sciences,
University of Maryland School of Pharmacy,
Baltimore, Maryland 21201, and Department of Radiation
and Cellular Oncology, The University of Chicago,
Chicago, Illinois 60637

Received February 26, 1998

Introduction
In 1954, it was proposed that free radicals were the toxic
intermediate associated with oxygen poisoning and ion-
izing radiation.1 Surprisingly, this hypothesis and its
implication to aerobic organisms seemed remote to the
scientists of that time, as more than a decade would elapse
before biological sources of superoxide would be linked
to the discovery of an enzymessuperoxide dismutases

designed to eliminate this free radical.2 Now as we
approach the 50th anniversary of the Gerschman1 hy-
pothesis, the importance of free radicals in biology is no
longer controversial. These reactive species are common
intermediates in cellular metabolism, where they play an
essential role in the control of many physiological func-
tions, including the regulation of vascular tone and host
immune response.3

Identification of free radicals at a cellular level is central
to the study of these intermediates. Although there are a
wide variety of analytic tools4 for identifying specific free

radicals, spin trapping and low-frequency EPR spectros-
copy has emerged as the primary method to characterize
free radicals in animals in real time and at their site of
evolution. This Account explores this development.

Background
The history of spin trapping traces its origin to a series of
publications in the late 1960s when several laboratories
reported the addition of free radicals to either nitroso-
alkanes or nitrones.5 The resulting nitroxidesa spin-
trapped adductswas found to exhibit remarkable stability
at ambient temperature, far exceeding the lifetime of the
parent free radical.5 Despite the nearly decade delay in
adapting this technique to biological systems6 and the
enormous literature devoted thereafter, the birth of spin
trapping can be dated from these early investigations.5,7

Considering the importance of superoxide dismutase
and catalase to life in an aerobic world,8 it is not surprising
that superoxide and hydroxyl radical were the first free
radicals of biological derivation to be spin trapped.9 In
subsequent years, an extensive spin trapping literature,
devoted to identifying oxygen- and carbon-centered free
radicals, has led to new insights into the role of free
radicals in biology. Herein, we will not detail these studies
as they have been extensively reviewed, but rather we will
focus our attention on issues pertaining to the in vivo in
situ spin trapping of free radicals in real time using low-
frequency EPR spectroscopy.

In Vivo in Situ Spin Trapping of Free Radicals
Low-Frequency EPR Spectroscopy. The in vivo in situ
detection of free radicals in real time in tissue samples of
dimensions larger than 1 mm requires EPR spectroscopy
at lower than conventional X-band (∼9.5 GHz) frequen-
cies. Living samples consist primarily of aqueous, con-
ductive material, which absorbs microwave and radio
frequency electromagnetic radiation.10 Under generic
conditions, this absorption or loss of electromagnetic
energy creates an exponential loss of signal as a function
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of depth of penetration. This loss of energy with depth
in the sample makes measurement deep in a living sample
virtually impossible for higher frequency radiation. It also
reduces the sensitivity of the measurement, even at
superficial depths. Animals, which absorb electromag-
netic energy, will increase the energy lost to absorption
and reduce the variable term Q. The Q of the EPR
resonator is the ratio of stored electromagnetic energy to
the energy lost to absorption in a single cycle. Classically,
the sensitivity of the magnetic resonance experiment is
proportional to Q. Thus, the sensitivity of the measure-
ment will diminish with larger samples at higher frequen-
cies.11

The distance scale of the exponential energy loss is set
by the frequency of the electromagnetic radiation. The
scale, referred to as the skin depth, is found to be inversely
proportional to the square root of the frequency. This
relationship between frequency and skin depth is model
dependent, where for many realistic situations, the effec-
tive skin depth is a stronger function of frequency.10,12

Electromagnetic loss will, therefore, diminish as the
frequency is lowered. Longer wavelengths will penetrate
deeper. At a given depth, there will be less absorption of
longer wavelength, lower frequency electromagnetic ra-
diation. At 9.5 GHz, experiments are limited to small
volumes of homogeneous solutions, crude enzyme prepa-
rations, isolated cell suspensions, and thin tissue slices
<1 mm thick.

As the frequency is lowered, paramagnetic species can
be identified in larger biological samples with magnetic
resonance spectroscopy, in particular EPR spectroscopy.
At a frequency of 2-4 GHz (S-band), for instance, detec-
tion of free radicals can be obtained at a depth of several
millimeters, increasing to approximately 1 cm at 1-2 GHz
(L-band). At still lower frequencies such as 250 MHz skin
depth absorption in tissues approaches 6-7 cm, making
larger animal measurements feasible.13

The sensitivity or signal-to-noise ratio (S/N) decreases
as the frequency diminishes, the extent of which is
controversial.14 It is commonly held that the sensitivity
is proportional to the square of the frequency. Certainly,
the signal can be thought of as having this dependence.15

One factor of frequency in this dependence is derived from
the proportionality of the energy in the absorbed quantum
to frequency through Planck’s relationship, also referred
to as the Boltzmann factor. The second frequency factor
derives from the coupling to a changing magnetization.
With a square rule frequency dependence, low-frequency
measurements would, therefore, be very difficult. Bear
in mind that a factor of approximately 1600 would be lost
in the S/N ratio in changing frequency from 9.5 GHz to
250 MHz. Despite this, it is important to consider sample
and resonator noise as a function of frequency in the S/N
ratio.14b,15,16 For animals that fill the resonator, consid-
eration of sample noise under relatively standard operat-
ing conditions yields a dependence of the S/N on fre-
quency of less than frequency to the first power.

One approach to balance the loss of sensitivity at lower
frequencies is to use a loop-gap resonator. In its simplest
form the loop-gap resonator is simply an inductive-
capacitive (L-C) circuit with the inductive element serving
as the sample holder. Loop-gap resonators with their high
power density and excellent filling factors are extraordi-
narily useful at high frequencies.17 At low frequencies
lumped circuit devices such as the loop-gap resonator are
required.18 For homogeneous samples and resonators
that are filled nearly entirely by the sample, even weaker
dependences of sensitivity on frequency are found. Even
with a dependence of sensitivity on frequency this weak,
the reduction in frequency still allows sensitive measure-
ments.19

Spin trapping Free Radicals. The ease of spin trapping
free radicals in isolated cells cannot readily be adopted
for animal models. Such variables as spin trap specificity,
sensitivity, and distribution, along with the rate of spin
trap adduct formation and stability of the corresponding
spin-trapped adduct, take on additional importance when
identifying a free radical in animal models in real time.
In isolated cell suspensions there are two compartmentss

intra- and extracellularsinto which the spin trap parti-
tions. Through well-designed experiments localization of
the corresponding spin-trapped adduct and by inference
the site of free radical formation can be deduced.20 In
contrast, such dynamic studies are considerably more
complicated in isolated organ preparations and in vivo.21

Several classes of spin traps have been developed to
react with specific free radicals. For instance, cyclic
nitrones such as 5,5-dimethyl-1-pyrroline N-oxide (1) can
spin trap superoxide, hydroxyl, and small carbon-centered
free radicals, giving spin-trapped adducts with defined
EPR spectra.9c Increasing steric hindrance has resulted
in nitrone 2 and nitrone 3, which exhibit specificity toward
hydroxyl radical.22

Substituted 2H-imidazole N-oxides (4) have displayed
selectivity toward hydroxyl and small carbon-centered free
radicals.23 Although acyclic nitrones, N-tert-butyl-R-phen-
ylnitrone (5) and R-(4-pyridyl 1-oxide)-N-tert-butylnitrone
(6), can react with superoxide and hydroxyl radical, the
half-life of the corresponding nitroxides is, however, under
a minute at room temperature.24 In contrast, the lifetime
of spin-trapped adducts derived from the reaction of
acyclic nitrones with small carbon-centered free radicals
is considerably longer.25

S/N ≈ ω0.8
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Finally, poor stability of spin-trapped adducts deduced
from the spin trapping of oxygen-centered free radicals
with nitrosoalkanes, 2-methyl-2-nitrosopropane (7) and
3,5-dibromo-4-nitrosobenzenesulfonate (8), limits the use
of these spin traps to carbon-centered free radicals.26

The physiological importance of nitric oxide has spurred
the synthesis of unique spin traps, some of which have
been used to identify this free radical in animal models
in real time. Unlike superoxide and hydroxyl radical, the
unexpectedly long lifetime of nitric oxide, an essential
prerequisite for a physiological transmitter whose cellular
target is often distant from the site of origin, presents
unique challenges in the design of spin traps specific for
this free radical. In fact, until recently it was questionable
whether nitric oxide could be spin trapped, as its fate in
aqueous solutions, yet alone in vivo, was uncertain. Even
though nitrite is the end product of nitric oxide autoxi-
dation,27 other intermediates, which may have a direct
impact on the spin trapping of this free radical, have only
recently been catalogued, including nitrosyloxyl radical
(ONOO•), nitrosyl radical (NO2

•), and dinitrogen trioxide
(N2O3).27c

One of the most innovative schemes for spin trapping
nitric oxide draws upon the ease with which “activated”
cis-conjugated dienes react with free radicals.28 Typical
of this new class of spin traps is 7,7,8,8-tetramethyl-o-
quinodimethane (10), which is generated upon photolysis
of 1,1,3,3-tetramethyl-2-indanone (9). Reaction of a solu-
tion of 10 with nitric oxide results in the formation of
1,1,3,3-tetramethylisoindolin-2-oxyl (11).28a

As nitric oxide is known to react with ferrous salts,
giving intense EPR spectra in aqueous solutions at ambi-
ent temperature, synthetic iron chelates have played an
important role in identifying this free radical in biological
milieu.29 One of the better defined complexes is iron(II)
diethyldithiocarbamate (Fe2+(DETC)2, 12a).29b Its reac-
tion with nitric oxide is characterized by the low-temper-
ature EPR spectrum at g⊥ ) 2.035 and g|| ) 2.02 with a
triplet hyperfine structure at g⊥.29b At 37 °C, the unre-
solved hyperfine structure g⊥ in the frozen state changes
to an isotropic triplet with gav ) 2.03. Poor water solubility
of 12a has limited its use. Alternative complexes,
Fe2+(MGD)2 (12b) or Fe2+(DTCS)2 (12c), have faired
better, as in vivo in situ EPR spectra corresponding to
NO-Fe2+(MGD)2 (13b) and NO-Fe2+(DTCS)2 (13c) have
been recorded in real time.19,30

Nitronyl nitroxides such as 14 have been explored as
spin traps for nitric oxide.31 Here, reaction with this free
radical results in the loss of NO2

• and the formation of an
imino nitroxide 16, whose EPR spectrum is distinguishable
from that of the parent nitroxide 14.31

In Vivo Spin Trapping in Real Time. Limitations to
Overcome. A loss of sensitivity occurs when the operating
frequency decreases from 9.5 GHz to 250 MHz. One
approach32 to compensate for this diminution in signal
intensity is to synthesize22b,33 spin traps with 2H and 15N
in place of 1H and 14N. Various ring and substitutent
aliphatic hydrogens contribute to the unresolved broad-
ening of the EPR spectral lines. Deuterium has a magnetic
moment approximately 1/7 that of hydrogen, but higher
multiplicity, giving an overall line width reduction by a
factor of 4. Further reduction in the hyperfine splitting
from 3 to 2 by replacing 14N with 15N gives an additional
enhancement of sensitivity by a factor of 1.5. In turn, this
has resulted in a proportionately higher sensitivity toward
superoxide and hydroxyl radical.33a,34 A number of isotope-
labeled spin traps have been synthesized, including 15N-
containing and deuterated 5,5-dimethyl-1-pyrroline N-
oxide33a (17), trideuterated 5,5-dimethyl-1-pyrroline N-
oxide33a (18), perdeuterated 5,5-dimethyl-1-pyrroline
N-oxide33a (19), deuterated N-tert-butyl-r-phenylnitrone33b

(20), 15N-containing N-tert-butyl-r-phenylnitrone33d (21),
perdeuterated 2-methyl-2-nitrosopropane33e (22), and
deuterated 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline
N-oxide33c (23). The significance34 of this enhanced
sensitivity can be seen by low-frequency EPR images from
spin-trapped adducts of nitrone 19, whereas such images
were not observed with nitrone 1.

Even with isotope-labeled nitrones, the feasibility of
spin trapping superoxide in vivo is problematic. Consider
that the rate constant24a for spin trapping superoxide by
nitrone 1 at physiological pH is no greater than 12 M-1

s-1, whereas the disproportionation rate constant35 for
superoxide at this pH is 3 × 105 M-1 s-1 and its reaction
with superoxide dismutase36 is considerably faster at 2 ×
109 M-1 s-1. Certainly phosphorylated nitrone 24, with
a 60 M-1 s-1 rate constant toward superoxide33c is a
significant improvement over nitrone 1; however, even
under the best of experimental conditions, spin trap 24
will have limited in vivo applications.
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From a kinetic standpoint, the spin trapping of hy-
droxyl radical offers an opportunity to in vivo in situ detect
this free radical, as it reacts with both cyclic and acyclic
nitrones at near diffusion-controlled rates.24a Yet poor
stability of the corresponding spin-trapped adducts has
greatly restricted this approach to static systems.24a,37 On
the basis of previous reports,25a,b a highly promising
approach involved an indirect method of hydroxyl radical
detection. Here, EtOH was included with nitrone 1,
nitrone 5, or nitrone 6. Hydrogen atom abstraction by
hydroxyl radical yielded R-hydoxylethyl radical, which was
subsequently spin trapped by each of the nitrones. We
found nitrone 6 and EtOH was the most sensitive of the
spin trapping systems examined with a second-order rate
constant of 3.1 × 107 M-1 s-1.25c Unlike hydroxyl radical
spin-trapped adducts of nitrones 5 and 6, R-hydroxy-
ethylmethyl R-pyridyl-1-oxide N-tert-butylnitroxide (25)
exhibited remarkable stability, appearing to be unaffected
by a myriad of biological reducing agents.25c

Even though spin trapping can distinguish among a
variety of biologically generated free radicals, cellular
metabolism can often disguise the origin of the initial free
radical spin trapped. For illustrative purposes, consider
the intracellular spin trapping of superoxide.20b,38 Here,
the corresponding nitroxide 26, a substrate for glutathione
peroxidase (GSPox),38 is rapidly converted to 2-hydroxy-
2,2,dimethy-1-pyrrolidinoxyl (27) at such a rate that the

EPR spectrum of nitroxide 26 is never recorded with
standard EPR spectrometers. In the intervening years,
much effort has been put forth to synthesize spin traps
with selectivity toward hydroxyl radical, thereby circum-
venting the masking effects of cellular metabolism.22a,b

The most successful of these spin traps, nitrone 3, is
resistant to a variety of biological oxidative reactions that
would otherwise result in artifactually derived nitroxides,22b

as is seen with nitrone 1. Thus, nitrone 3 has the potential
to distinguish between intracellularly produced superoxide
and hydroxyl radical and may find a niche in the in vivo
characerization of hydroxyl radical.

Localization of the spin trap at the site of free radical
evolution is one of the most difficult and daunting tasks
that awaits attempts to identify the reactive intermediate
in isolated organ preparations and in animal models.
Consider, for example, the in vivo in situ spin trapping of
radiation-induced hydroxyl radical in a mouse in real
time.21b The experimental design, based on in vitro
kinetic and stability studies,25c included the introduction
of EtOH and nitrone 6 into a mouse extremity tumor, to
which was delivered a high, toxic dose of radiation to a
substantial bulk of the tumor with minimal effect on the
physiology of the animal. On the basis of the observed
EPR spectrum25c characteristic of nitroxide 25, it was
assumed that nitrone 6 and EtOH were compartmental-
ized within the same tissue so that radiation-induced
R-hydroxyethyl radical could react with acyclic nitrone
6.21b

Even though EtOH can diffuse into many sites within
a tissue, nitrone 6, which has a small 1-octanol/water
partition coefficient of ∼0.09, does not passively enter
cells.25c Thus, the detection of hydroxyl radical as nitroxide
25 was solely limited to interstitial and vascular spaces.
Poor cellular uptake of nitrone 6 resulted in measure-
ments of spin-trapped adducts that localized away from
sites of relevant intracellular production of free radicals.
Whatever free radical events that may take place intrac-
elluarly, they would not be discernible with nitrone 6 and
EtOH, even though γ-irradiation of water within cells has
long been known to produce hydroxyl radical at sensitive
loci.39

The in vivo activation of intraperitoneal macrophages
with high doses of lipopolysaccharide has allowed the in
vivo in situ spin trapping of macrophage-derived nitric
oxide.19,30,40 The successful experiment was dependent
upon phagocytic release of a high flux of nitric oxide for
prolonged periods of time. Diffusion from intracellular
sites of formation allowed nitric oxide to be spin trapped
in the surrounding milieu by the charged iron chelates
12b and 12c.

Spin Trapping of Free Radicals Pou et al.

158 ACCOUNTS OF CHEMICAL RESEARCH / VOL. 32, NO. 2, 1999



Significance
In 1895, Röntgen, while investigating the nature of cathode
rays, found that this tube was emitting a penetrating form
of radiation, which he called the X-ray.41 Within a month
of this publication, physicians in Chicago42 and Zürich
used X-rays to treat cancer patients with this radiation. It
was soon recognized that the radiation emitted from
Crookes tube and from specific isotopes of various ele-
ments had profound effects on water. However, it was
not until 1944 that this reaction was found to generate
hydroxyl radical.43

Verification that such reactions take place in vivo would
take another 50 yearssthe 100th anniversary of the
discovery of the X-rayswhen spin trapping/low-frequency
EPR spectroscopy measured the in vivo in situ generation
of this free radical in real time.21b

In 1980, Furchgott and Zawakzki44 demonstrated that
acetylcholine induced vascular relaxation in precontracted
aortic rings. This relaxation was dependent upon the
presence of the endothelium. On the basis of their results,
it was proposed3a that acetylcholine stimulated the release
of a factor, known as endothelial-derived relaxation factor
(EDRF), which resulted in the observed physiological
response. Subsequently, it was demonstrated that the free
radical nitric oxide exhibited many of the physiological
properties attributed to EDRF.44 Besides regulating vas-
cular tone, nitric oxide has been shown to be a novel
transient biological messenger as this free radical aug-
ments cell-cell communications and governs many in-
tracellular events, in addition to its role in host immune
defense, particularly effective against a number of intra-
cellular pathogens.45 Only recently with the development
of in vivo stable ferrochelates, such as 12b and 12c, has it
been possible to in vivo in situ spin trap nitric oxide in
real time using low-frequency EPR spectroscopy.22b,30,40

When one considers the complexity of the in vivo in
situ spin trapping studies described above, the detection
of a specific free radical has to be considered a remarkable
accomplishment. Yet such successes were achieved with
exceedingly high, nonpharmacological doses of γ-irradia-
tion21b and cytokine levels22b,30,40 far in excess of what is
considered physiological. One of the great challenges will
be the identification and localization of these free radicals
at standard clinical doses of radiation and under homeo-
static conditions. These goals can be achieved through
design of spin traps whose specificity, sensitivity, and
lipophilicity will allow detection of specific free radicals
at relevant tissue compartments. Likewise, further de-
velopments in very low-frequency EPR spectroscopy, such
as a pulsed EPR spectrometer46 operating at 300 MHz,
hold great promise for rapid data acquisition, an essential
element in improvement of EPR spectroscopic sensitivity.

This research was supported by grants from the National
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